- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hahna, Ernst Moritz (1)
-
Perez, Mateo (1)
-
Schewe, Sven (1)
-
Somenzi, Fabio (1)
-
Trivedi, Ashutosh (1)
-
Wojtczak, Dominik (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
Endriss, Ulle (1)
-
Melo, Francisco (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Endriss, Ulle; Melo, Francisco (Ed.)Alternating-time temporal logic (ATL) extends branching time logic by enabling quantification over paths that result from the strategic choices made by multiple agents in various coalitions within the system. While classical temporal logics express properties of “closed” systems, ATL can express properties of “open” systems resulting from interactions among several agents. Reinforcement learning (RL) is a sampling-based approach to decision-making where learning agents, guided by a scalar reward function, discover optimal policies through repeated interactions with the environment. The challenge of translating high-level objectives into scalar rewards for RL has garnered increased interest, particularly following the success of model-free RL algorithms. This paper presents an approach for deploying model-free RL to verify multi-agent systems against ATL specifications. The key contribution of this paper is a verification procedure for model-free RL of quantitative and non-nested classic ATL properties, based on Q-learning, demonstrated on a natural subclass of non-nested ATL formulas.more » « less
An official website of the United States government

Full Text Available